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In this work, a numerical model using an immersed boundary (IB) method and volume of fluid

(VOF) method is proposed to estimate the interactions between free-surface waves and submerged
floating body, which is inclinedly moored. The IB method is applied to handle solid object boundaries

which are replaced with a proper force in the Navier-Stokes equations imposed on the body surface. The

VOF method is employed to track the free surface. The finite displacements of the breakwater such as

sway, heave and roll in very small time step are considered using the Newton's laws of motion. The

validity of the developed model in the evaluation of free surface and the motions of floating breakwater is

supported by the comparisons of numerical results and available experimental data.
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1. INTRODUCTION

Floating breakwaters can give a good alternative
solution to protect harbors from wave attack
compared to traditional gravity-type breakwaters
with several advantages, e.g. eco-friendliness, lower
construction cost, convenience of transportation and
installation. The understanding of dynamics of a
floating breakwater, including the response of the
structure such as sway, heave and roll, under wave
action is very important in designing the structure
not only for the efficiency of dissipating wave
energy but also for the safety of the breakwater
structure.

The earlier work on the dynamics of floating
structures depends largely on the potential theory in
the frequency domain. However, there are two
shortages in the application of these kinds of
models. One is the difficulty in simulating
large-scale motions of floating body. The other one
is the assumption of irrotational flow, which
generates difficulty in reproducing the rotational

motion of floating body and vortex formed around
the structure. Mizutani et al. (2004) proposed a
VOF-based numerical model using Fractional Area
Volume Obstacle Representation (FAVOR) method
to simulate the dynamics of the moored floating
breakwater. However, in the FAVOR method, the
mass conservation cannot be fully satisfied when
treating the movable solid boundary such as the
floating body. Another issue is the high
computational cost due to the reconstruction of the
complex geometry of the solid structure. Lee and
Mizutani (2007, 2009) presented a numerical wave
flume model based on Immersed Boundary (IB)
method, which is capable of handling interface
problems with complex geometry on a standard
regular Cartesian grid. Lee et al. (2008) reported
that IB method can successfully simulate the
dynamic behavior of the vertically moored tension
leg floating body.

In this paper, we extend the numerical model
proposed by Lee et al. (2007, 2009) to the
inclinedly moored floating body. Three freedoms of
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Fig. 1 Schematic illustration of computation domain.

floating body motion are considered as sway, heave
and roll. Moreover, experimental results are utilized
to validate the numerical model.

2. NUMERICAL MODLE

(1) Governing equations

In the 2D wave-structure interaction, the flow of
an incompressible viscous fluid in a Cartesian
domain Q, as illustrated in Fig. 1, is govérned by
the continuity equation and modified Navior-Stokes
equations, given by
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where x; donates the x or the z orthogonal Cartesian
coordinate, u; is the velocity component (u, w) in
the 7 direction, p is pressure, p is the fluid density, ¢
is time, g is the acceleration due to gravity, v is the
kinematic viscosity coefficient of the water, y is a
wave dissipation factor, which is equal to zero
except for the sponge zones, D; is the velocity
stress tensor, and Q is the source term at the source
position x=x,, O=q(z,t)/Ax; where g is the flux
density and Ax, is the grid width at the source
position. Furthermore, in Eq. (2), L; is the Eulerian
force (Lima E Silva et al., 2003) in the i direction,
which corresponds to the effect of a solid body on
the flow, determined by
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where Zh. is the force density at the Lagrangian

points x;, and &(x; —x;) is a Dirac delta function.

Also, the advection equation of VOF function F
is used to capture the free water surface, as follows:
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(2) IB method

The IB method was originally introduced by
Peskin (1972) to simulate blood flows in mitral
valves, and was later developed to solve problems
in various fields including incompressible fluid
flows (e.g., Fadlun et al., 2000; Kim et al., 2001;
Lee and Mizutani, 2007, 2009). The main
advantage of the IB method is the simplified gird
generation without coordinate transformation,
overlapping and mapping of meshes.

In the present model, the boundary of obstacle is
replaced with a set of discrete control points x;

(Lagrangian points). The force density Z,a. is
computed over these points, and then distributed to

the nearby Cartesian grid points by a certain
distribution function.
a) Evaluation of forcing term

It is noted that the forcing term L; is added to the
momentum equation to represent the embedded
solid boundary. The imposed force components
must be determined before the solving of
momentum equation. In this study, the PVM
method (Lima E Silva et al., 2003) is preferred due
to its simplicity and lower calculation cost. In the
PVM method, the added forcing term is calculated
explicitly, and is broken into different terms, while
each term has a specific physical meaning. The

Lagrangian force field Z,a. , in Eq. (3) is expressed by
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where u;; and p; are the interface velocity
components and pressure over the interface,
respectively, the subscript i represents the direction
in the Cartesian coordinate system and x; is the
location of the Lagrangian point. The forcing term
is taken apart as acceleration forcing, inertial
forcing, viscous forcing and pressure forcing as
shown in the RHS of Eq. (5).

In the calculation of Eq. (5), the fluid velocity
must be equal to the interface velocity, which
guarantees the no-slip condition. The spatial
derivatives of the velocity and pressure in the
Lagrangian force term will be obtained by a
polynomial at each Lagrangian point £ using the
fluid particle velocity and pressure around the
Lagrangian point (Lima E Silva et al., 2003; Lee
and Mizutani, 2007, 2009).



b) Distribution of forcing term

From the Eq. (5), the Lagrangian force term can
be calculated and a smooth distribution function is
needed to link them to the Eulerian grids. The
well-discretized Dirac delta function (Griffith and
Peskin, 2005) is used as (Eq. (6) ~ Eq. (9)). Then, a

two-step projection method (Chorin, 1968) is
adopted to solve the governing equations.
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(3) Dynamics of the floating body

It is considered that the weight of the floating
body is much smaller than the buoyancy forces
acting on it vertically, which means the slack state
of the mooring chains will not occur. The dynamic
properties of the submerged floating breakwater due
to its interaction with wave are formulated (Fig. 2).
The wave forces acting on the surfaces of the
breakwater H;~H, and V;~V, can be calculated by
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Fig. 2 Calculation of the floating body dynamics.

integrating the pressures on the corresponding
surface. For the floating body, considering the
moments acting on the centre of gravity, resultant
horizontal and vertical force acting on the body, the
following equations can be derived:

Z‘Mc.g = ZMcg.x +ZMcg.z +ZMEg.T

=J Ot (10)
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where Y>M.o., YMe., YMe,r rtepresent the

summation of moment governed by the horizontal
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Fig. 3 Numerical model results of water particle velocity (cm/s) field around the inclinedly moored floating breakwater (case 2).



wave forces, vertical wave forces and the mooring
forces respectively, Jrp is the mass moment of
inertia of the floating body, ars a, a, are the
accelerations of angle o, horizontal direction and
vertical direction respectively; m is the mass of the
floating body.

Considering no slack condition, two additional
equations can be derived from the geometry in Fig.
2 as:
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By solving above five equations (Eq. (10) ~ Eq.
(14)) simultaneously, the unknown parameters arz,
oy, 0, T; and T, can be calculated. Finally, the sway,
heave and roll displacements are estimated using
ars, &, and a, values.

3. RESULTS AND DISCUSSION

Laboratory experiments were carried out in a
two-dimensional wave tank at Nagoya University.

In the experiments, a rectangular shaped pontoon
type submerged floating breakwater (length: 0.4 m;
width: 0.68 m; height: 0.15 m; weight: 28.6 kg)
with the mooring chain (length: 0.36 m) was used.
Experimental data is employed to estimate the
performance of the developed model for two cases,
casel: wave period T=0.9 seconds; wave height
H=0.038 m; depth of wave tank #=0.60 m; distance
from the static water level to the top surface of
floating breakwater ¢=0.137 m; inclined angle
6,~60°; wave steepness H; /L=0.03; case2: T=1.2 s,

" H=0.085 m, »=0.60 m, 4=0.137 m, 6,~60°, H;
/L=0.04. In the computation, a uniform grid system
with Ax=Az=0.01 m and the time interval of-0.001 s
was employed.

Figure 3 shows the transient velocity field and
the corresponding free surface position during one
wave period at the interval of 0.2 s. Utilizing the
water surface profile, complex forms such as the
wave breaking phenomenon can be monitored using
the proposed model (Fig. 3(e)). Further, a vortex is
observed near the floating body when the incident
wave is propagating over the submerged floating
breakwater. Also, the corresponding positions of the
breakwater are captured in this figure, which show
an oscillation due to the interaction with waves.
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Fig. 4 Comparison between numerical and experimental results of the dimensionless water surface profiles.



The time series water surfaces at four points of
offshore and onshore sides for case 1 and case 2 are
predicted and shown in Fig. 4(A) and (B)
respectively. The experiment measures are added
for comparison for five wave cycles and a good
agreement is achieved, which demands the good
performance of VOF method in evaluating the free
surface. In Fig. 4(A), the water surface profiles of
onshore side are nearly symmetric, which means
the affection of nonlinear interaction is indistinctive
due to smaller wave height in case 1. On the other
hand, in Fig. 4(B), the water surfaces at onshore
side show inconsistent variation in both estimated
and measured values. This variation indicates a
complex form in the reformed area after the wave
breaking and a secondary crest is created due to the
wave-floating body interaction.

Figure 5 shows the comparisons between the
simulated displacements of the floating body and
the experiment results as function of the
dimensionless time. A good agreement is observed
between them. Even for the heave motion, the
results are reasonable considering the inevitable
measurement errors during experiments. Therefore,
the presented model is validated to be a reliable
dynamic simulator in mimicking the interaction of
solid object with wave.

4. CONCLUSION

A two-dimensional numerical model was
developed to analyze the interaction between wave
and pontoon type rectangular shaped submerged
floating breakwater which is anchored with the
chain system. The model incorporated IB method
for treating the floating breakwater and the VOF
method for tracking the free surface. Also, the
displacements (sway, heave and roll) of the floating
body under wave action were estimated using this
model. The validity of the developed model is well
supported by the comparisons of estimated values
and experimental measurements in evaluating water
surface profiles and motions of the submerged
floating breakwater.
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Fig. 5 Comparisons between numerical and experimental results
of displacements of the floating body (case 1).

REFERENCES

Chorin, A. J. (1968): Numerical solution of the Navier-Stokes
equations, Math. Comp., Vol. 22, pp. 745-762.

Fadlun, E.A., R. Verzicco, P. Orlandi and J. Mohd-Yusof (2000):
Combined immersed-boundary finite-difference methods
for three-dimensional complex flow simulations, Journal of
Computational Physics, Vol. 161, No. 1, pp. 35-60.

Griffith, B.E. and C. S. Peskin (2005): On the order of accuracy
of the immersed boundary method: Higher order
convergence rates for sufficiently smooth problems,
Journal of Computational Physics, Vol. 208, pp. 75-105.

Kim, J., D. Kim and H. Choi (2001): An immersed-boundary
finite-volume method for simulations of flow in complex
geometries, Journal of Computational Physics, Vol. 171,
No. 1, pp. 132-150.

Lee, K.-H. and N. Mizutani (2007): Numerical wave flume
with immersed boundary method and its applicability in
wave fields simulation around a horizontal circular cylinder,
Annual Journal of Coastal Engineering, JSCE, Vol. 54, pp.
821-825. (in Japanese) .

Lee, K.-H.,, N. Mizutani and M. Goto (2008): Numerical
simulation of dynamic behavior of tension leg floating
body using IB method, Annual Journal of Coastal
Engineering, JSCE, Vol.55, pp.891-895. (in Japanese)

Lee, K.-H. and N. Mizutani (2009): A numerical tank using
direct-forcing  immersed boundary method and its
application to wave force on a horizontal cylinder, Costal
Engineering Journal, Vol. 51, No. 1, pp. 27-48.

Lima e Silva, A. L. F., A. Silveria-Neto and J. J. R. Damasceno
(2003): Numerical simulation of two dimensional flows
over a circular cylinder using the immersed boundary
method, Journal of Computational Physics, Vol. 351, pp.
351-370.

Mizutani, N., M.A. Rahman, D.S. Hur and H. Shimabukuro
(2004): VOF simulation for dynamic behavior of
submerged floating breakwater and wave deformation
considering finite displacement, Annual Journal of the
Costal Engineering, JSCE, Vol. 51, pp. 701-705. (in
Japanese)

Peskin, C. S. (1977): Numerical analysis of blood flow in the
heart, Journal of Computational Physics, Vol. 25, pp.
220-252.

(Received June 16, 2010)





